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Abstract

We consider the common setting where one observes probability estimates for a large number

of events, such as default risks for numerous bonds. Unfortunately, even with unbiased estimates,

selecting events corresponding to the most extreme probabilities can result in systematically

underestimating the true level of uncertainty. We develop an empirical Bayes approach “Excess

Certainty Adjusted Probabilities” (ECAP), using a variant of Tweedie’s formula, which updates

probability estimates to correct for selection bias. ECAP is a flexible non-parametric method,

which directly estimates the score function associated with the probability estimates, so it does

not need to make any restrictive assumptions about the prior on the true probabilities. ECAP

also works well in settings where the probability estimates are biased. We demonstrate through

theoretical results, simulations, and an analysis of two real world data sets, that ECAP can

provide significant improvements over the original probability estimates.

Keywords: Empirical Bayes; selection bias; excess certainty; Tweedie’s formula.

1 Introduction

We are increasingly facing a world where automated algorithms are used to generate probabilities,

often in real time, for thousands of different events. Just a small handful of examples include

finance where rating agencies provide default probabilities on thousands of different risky assets

(Kealhofer, 2003; Hull et al., 2005); sporting events where each season ESPN and other sites

estimate win probabilities for all the games occurring in a given sport (Leung and Joseph, 2014);

politics where pundits estimate the probabilities of candidates winning in congressional and state

races during a given election season (Silver, 2018; Soumbatiants et al., 2006); or medicine where

researchers estimate the survival probabilities of patients undergoing a given medical procedure

(Poses et al., 1997; Smeenk et al., 2007). Moreover, with the increasing availability of enormous

quantities of data, there are more and more automated probability estimates being generated and

consumed by the general public.

Many of these probabilities have significant real world implications. For example, the rating

given to a company’s bonds will impact their cost of borrowing, or the estimated risk of a medical

procedure will affect the patient’s likelihood of undertaking the operation. This leads us to question

the accuracy of these probability estimates. Let pi and p̃i respectively represent the true and

estimated probability of Ai occurring for a series of events A1, . . . , An. Then, we often seek an

unbiased estimator such that E(p̃i|pi) = pi, so p̃i is neither systematically too high nor too low.

Of course, there are many recent examples where this unbiasedness assumption has not held. For
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Figure 1: Left: Simulated pi and associated p̃i. The probability estimates are unbiased. Center: The
average value of pi, as a function of p̃i i.e. E(pi|p̃i) (orange line) is systematically higher than p̃i (dashed
line). Right: The ratio of E(pi|p̃i) relative to p̃i, as a function of p̃i. An ideal ratio would be one (dashed
line).

example, prior to the financial crisis of 2008 rating agencies systematically under estimated the risk

of default for mortgage backed securities so E(p̃i|pi) < pi. Similarly, in the lead up to the 2016

US presidential election political pundits significantly underestimated the uncertainty in which

candidate would win.

However, even when unbiasedness does hold, using p̃i as an estimate for pi can cause significant

problems. Consider, for example, a conservative investor who only purchases bonds with extremely

low default risk. When presented with n estimated bond default probabilities p̃1, . . . , p̃n from a

rating agency, she only invests when p̃i = 0.001. Let us suppose that the rating agency has done

a careful risk assessment, so their probability estimates are unbiased for all n bonds. What then

is the fraction of the investor’s bonds which will actually default? Given that the estimates are

unbiased, one might imagine (and the investor is certainly hoping) that the rate would be close to

0.001. Unfortunately, the true default rate may be much higher.

Figure 1 provides an illustration. We first generated a large number of probabilities pi from

a uniform distribution and then produced corresponding p̃i in such a way that E(p̃i|pi) = pi for

i = 1, . . . , n. In the left panel of Figure 1 we plotted a random sample of 100 of these probabilities,

concentrating on values less than 10%. While there is some variability in the estimates, there is

no evidence of bias in p̃i. In the middle panel we used the simulated data to compute the average

value of pi for any given value of p̃i i.e. E(pi|p̃i). A curious effect is observed. At every point the

average value of pi (orange line) is systematically higher than p̃i (dashed line) i.e. E(pi|p̃i) > p̃i.

Finally, in the right panel we have plotted the ratio of E(pi|p̃i) to p̃i. Ideally this ratio should be

approximately one, which would, for example, correspond to the true risk of a set of bonds equalling

the estimated risk. However, for small values of p̃i we observe ratios far higher than one. So, for

example, our investor who only purchases bonds with an estimated default risk of p̃i = 0.001 will

in fact find that 0.004 of her bonds end up defaulting, a 400% higher risk level than she intended

to take!

These somewhat surprising results are not a consequence of this particular simulation setting.

It is in fact an instance of selection bias, a well known issue which occurs when the selection

of observations is made in such a way, e.g. selecting the most extreme observations, that they

can no longer be considered random samples from the underlying population. If this bias is not
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taken into account then any future analyses will provide a distorted estimate of the population.

Consider the setting where we observe X1, . . . , Xn with E(Xi) = µi and wish to estimate µi based

on an observed Xi. Then it is well known that the conditional expectation E(µi|Xi) corrects for

any selection bias associated with choosing Xi in a non-random fashion (Efron, 2011). Numerous

approaches have been suggested to address selection bias, with most methods imposing some form

of shrinkage to either explicitly, or implicitly, estimate E(µi|Xi). Among linear shrinkage methods,

the James-Stein estimator (James and Stein, 1961) is the most well known, although many others

exist (Efron and Morris, 1975; Ikeda et al., 2016). There are also other popular classes of methods,

including: non-linear approaches utilizing sparse priors (Donoho and Johnstone, 1994; Abramovich

et al., 2006; Bickel and Levina, 2008; Ledoit and Wolf, 2012), Bayesian estimators (Gelman and

Shalizi, 2012) and empirical Bayes methods (Jiang and Zhang, 2009; Brown and Greenshtein, 2009;

Petrone et al., 2014).

For Gaussian data, Tweedie’s formula (Robbins, 1956) provides an elegant empirical Bayes

estimate for E(µi|Xi), using only the marginal distribution of Xi. While less well known than the

James-Stein estimator, it has been shown to be an effective non-parametric approach for addressing

selection bias (Efron, 2011). The approach can be automatically adjusted to lean more heavily

on parametric assumptions when little data is available, but in settings such as ours, where large

quantities of data have been observed, it provides a highly flexible non-parametric shrinkage method

(Benjamini and Yekutieli, 2005; Henderson and Newton, 2015).

However, the standard implementation of Tweedie’s formula assumes that, conditional on µi, the

observed data follow a Gaussian distribution. Most shrinkage methods make similar distributional

assumptions or else model the data as unbounded, which makes little sense for probabilities. What

then would be a better estimator for low probability events? In this paper we propose an empirical

Bayes approach, called “Excess Certainty Adjusted Probability” (ECAP), specifically designed for

probability estimation in settings with a large number of observations. ECAP uses a variant of

Tweedie’s formula which models p̃i as coming from a beta distribution, automatically ensuring the

estimate is bounded between 0 and 1. We provide theoretical and empirical evidence demonstrating

that the ECAP estimate is generally significantly more accurate than p̃i.

This paper makes three key contributions. First, we convincingly demonstrate that even an

unbiased estimator p̃i can provide a systematically sub-optimal estimate for pi, especially in situa-

tions where large numbers of probability estimates have been generated. This leads us to develop

the oracle estimator for pi, which results in a substantial improvement in expected loss. Second,

we introduce the ECAP method which estimates the oracle. ECAP does not need to make any

assumptions about the distribution of pi. Instead, it relies on estimating the marginal distribution,

and conditional accuracy, of p̃i, a relatively easy problem in the increasingly common situation

where we observe a large number of probability estimates. Finally, we extend ECAP to the biased

data setting where p̃i represents a biased observation of pi and show that even in this setting we

are able to recover systematically superior estimates of pi.

The paper is structured as follows. In Section 2 we first formulate a model for p̃i and a loss

function for estimating pi. We then provide a closed form expression for the corresponding oracle

estimator and its associated reduction in expected loss. We conclude Section 2 by proposing the

ECAP estimator for the oracle and deriving its theoretical properties. Section 3 provides two

extensions. First, we propose a bias corrected version of ECAP, which can detect situations where
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p̃i is a biased estimator for pi and automatically adjust for the bias. Second, we generalize the

ECAP model from Section 2. Next, Section 4 contains results from an extensive simulation study

that examines how well ECAP works to estimate pi, in both the unbiased and biased settings.

Section 5 illustrates ECAP on two interesting real world data sets. The first is a unique set of

probabilities from ESPN predicting, in real time, the winner of various NCAA football games, and

the second contains the win probabilities of all candidates in the 2018 US midterm elections. We

conclude with a discussion and possible future extensions in Section 6. Proofs of all theorems are

provided in the appendix.

2 Methodology

Let p̃1, . . . , p̃n represent initial estimates of events A1, . . . , An occurring. In practice, we assume that

p̃1, . . . , p̃n have already been generated, by previous analysis or externally, say, by an outside rating

agency in the case of the investment example. Our goal is to construct estimators p̂1(p̃1), . . . , p̂n(p̃n)

which provide more accurate estimates for p1, . . . , pn. In order to derive the estimator we first choose

a model for p̃i and select a loss function for p̂i, which allows us to compute the corresponding oracle

estimator pi0. Finally, we provide an approach for generating an estimator for the oracle p̂i. In this

section we only consider the setting where p̃i is assumed to be an unbiased estimator for pi. We

extend our approach to the more general setting where p̃i may be a biased estimator in Section 3.1.

2.1 Modeling p̃i and Selecting a Loss Function

Given that p̃i is a probability, we model its conditional distribution using the beta distribution1.

In particular, we model

p̃i|pi ∼ Beta(αi, βi), where αi =
pi
γ∗
, βi =

1− pi
γ∗

, (1)

and γ∗ is a fixed parameter which influences the variance of p̃i. Under (1),

E(p̃i|pi) = pi and V ar(p̃i|pi) =
γ∗

1 + γ∗
pi(1− pi), (2)

so p̃i is an unbiased estimate for pi, which becomes more accurate as γ∗ tends to zero. Figure 2

provides an illustration of the density function of p̃i for three different values of pi. In principle,

this model could be extended to incorporate observation specific variance terms γ∗i . Unfortunately,

in practice γ∗ needs to be estimated, which would be challenging if we assumed a separate term

for each observation. However, in some settings it may be reasonable to model γ∗i = wiγ
∗, where

wi is a known weighting term, in which case only one parameter needs to be estimated.

Next, we select a loss function for our estimator to minimize. One potential option would be

to use a standard squared error loss, L(p̂i) = E (pi − p̂i)2. However, this loss function is not the

most reasonable approach in this setting. Consider for example the event corresponding to a bond

defaulting, or a patient dying during surgery. If the bond has junk status, or the surgery is highly

risky, the true probability of default or death might be pi = 0.26, in which case an estimate of

1We consider a more general class of distributions for p̃i in Section 3.2
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Figure 2: Density functions for p̃i given pi = 0.002 (blue / solid), pi = 0.01 (orange / dot-dashed), and
pi = 0.03 (green / dashed). In all three cases γ∗ = 0.001.

p̂i = 0.25 would be considered very accurate. It is unlikely that an investor or patient would have

made a different decision if they had instead been provided with the true probability of 0.26.

However, if the bond, or surgery, are considered very safe we might provide an estimated

probability of p̂i = 0.0001, when the true probability is somewhat higher at pi = 0.01. The

absolute error in the estimate is actually slightly lower in this case, but the patient or investor

might well make a very different decision when given a 1% probability of a negative outcome vs a

one in ten thousand chance.

In this sense, the error between pi and p̂i as a percentage of p̂i is a far more meaningful measure

of precision. In the first example we have a percentage error of only 4%, while in the second instance

the percentage error is almost 10,000%, indicating a far more risky proposition. To capture this

concept of relative error we introduce as our measure of accuracy a quantity we call the “Excess

Certainty”, which is defined as

EC(p̂i) =
pi − p̂i

min(p̂i, 1− p̂i)
. (3)

In the first example EC = 0.04, while in the second example EC = 99. Note, we include p̂i in the

denominator rather than pi because we wish to more heavily penalize settings where the estimated

risk is far lower than the true risk (irrational exuberance) compared to the alternative where true

risk is much lower.

Ideally, the excess certainty of any probability estimate should be very close to zero. Thus, we

adopt the following expected loss function,

L(p̂i, p̃i) = Epi
(
EC(p̂i)

2|p̃i
)
, (4)

where the expectation is taken over pi, conditional on p̃i. Our aim is to produce an estimator p̂i
that minimizes (4) conditional on the observed value of p̃i. It is worth noting that if our goal was

solely to remove selection bias then we could simply compute E(pi|p̃i), which would be equivalent

to minimizing E
[
(pi − p̂i)2 |p̃i

]
. Minimizing (4) generates a similar shrinkage estimator, which also

removes the selection bias, but, as we discuss in the next section, it actually provides additional

shrinkage to account for the fact that we wish to minimize the relative, or percentage, error.
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2.2 The Oracle Estimator

We now derive the oracle estimator, pi0, which minimizes the loss function given by (4),

pi0 = arg min
a
Epi

[
EC(a)2|p̃i

]
. (5)

Our ECAP estimate aims to approximate the oracle. Theorem 1 below provides a relatively simple

closed form expression for pi0 and a bound on the minimum reduction in loss from using pi0 relative

to any other estimator.

Theorem 1 For any distribution of p̃i,

pi0 =

min
(
E(pi|p̃i) + V ar(pi|p̃i)

E(pi|p̃i) , 0.5
)
, E(pi|p̃i) ≤ 0.5

max
(

0.5 , E(pi|p̃i)− V ar(pi|p̃i)
1−E(pi|p̃i)

)
, E(pi|p̃i) > 0.5.

(6)

Furthermore, for any p′i 6= pi0,

L(p′i, p̃i)− L(pi0, p̃i) ≥

E
(
p2i |p̃i

) [
1
p′i
− 1

pi0

]2
, pi0 ≤ 0.5

E
(
[1− pi]2|p̃i

) [
1

1−p′i
− 1

1−pi0

]2
, pi0 ≥ 0.5.

(7)

Remark 1 Note that both bounds in (7) are valid when pi0 = 0.5.

We observe from this result that the oracle estimator starts with the conditional expectation

E(pi|p̃i) and then shifts the estimate towards 0.5 by an amount V ar(pi|p̃i)
min(E(pi|p̃i),1−E(pi|p̃i)) . However, if

this would move the estimate past 0.5 then the estimator simply becomes 0.5.

Figure 3 plots the average excess certainty (3) from using p̃i to estimate pi (orange lines) and

from using pi0 to estimate pi (green lines), for three different values of γ∗. Recall that an ideal EC

should be zero, but the observed values for p̃i are far larger, especially for higher values of γ∗ and

lower values of p̃i. Note that, as a consequence of the minimization of the expected squared loss

function (4), the oracle is slightly conservative with a negative EC, which is due to the variance

term in (6).

It is worth noting that Theorem 1 applies for any distribution of p̃i|pi and does not rely on our

model (1). If we further assume that (1) holds, then Theorem 2 provides explicit forms for E(pi|p̃i)
and V ar(pi|p̃i).

Theorem 2 Under (1),

E(pi|p̃i) = µi ≡ p̃i + γ∗ [g∗(p̃i) + 1− 2p̃i] (8)

V ar(pi|p̃i) = σ2i ≡ γ∗p̃i(1− p̃i) + γ∗2p̃i(1− p̃i)
[
g∗′(p̃i)− 2

]
, (9)

where g∗(p̃i) = p̃i(1− p̃i)v∗(p̃i), v∗(p̃i) = ∂
∂p̃i

log f∗(p̃i) is the score function of p̃i and f∗(p̃i) is the

marginal density of p̃i.

If we also assume that the distribution of pi is symmetric then further simplifications are possible.
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Figure 3: Average excess certainty as a function of p̃i for three different values of γ∗ (orange / dashed line).
All plots exhibit excess certainty far above zero but the issue grows worse as γ∗ gets larger, corresponding
to more variance in p̃i. The green (solid) line in each plot corresponds to the average excess certainty for
the oracle estimator pi0.

Corollary 1 If the prior distribution of pi is symmetric about 0.5, then

pi0 =

min
(
E(pi|p̃i) + V ar(pi|p̃i)

E(pi|p̃i) , 0.5
)
, p̃i ≤ 0.5

max
(

0.5 , E(pi|p̃i)− V ar(pi|p̃i)
1−E(pi|p̃i)

)
, p̃i > 0.5,

(10)

g∗(0.5) = 0, and g∗(p̃i) = −g∗(1− p̃i). (11)

A particularly appealing aspect of Theorem 2 and its corollary is that g∗(p̃i) is only a function

of the marginal distribution of p̃i, so that it can be estimated directly using the observed proba-

bilities p̃i. In particular, we do not need to make any assumptions about the distribution of pi in

order to compute g∗(p̃i).

2.3 Estimation

In order to estimate pi0 we must form estimates for g∗(p̃i), its derivative g∗′(t), and γ∗.

2.3.1 Estimation of g

Let ĝ(p̃) represent our estimator of g∗(p̃). Given that g∗(p̃) is a function of the marginal distribution

of p̃i, i.e. f∗(p̃i), then one could estimate g∗(p̃i) by p̃i(1− p̃i)f̂ ′(p̃i)/f̂(p̃i), where f̂(p̃i) and f̂ ′(p̃i) are

respectively estimates for the marginal distribution of p̃i and its derivative. However, this approach

requires dividing by the estimated density function, which can produce a highly unstable estimate

in the boundary points, precisely the region we are most interested in.

Instead we directly estimate g∗(p̃) by choosing ĝ(p̃) so as to minimize the risk function, which

is defined as R(g) = E[g(p̃)− g∗(p̃)]2 for every candidate function g. The following result provides

an explicit form for the risk.

Theorem 3 Suppose that model (1) holds, and the prior for p has a bounded density. Then,

R(g) = Eg(p̃)2 + 2E
[
g(p̃)(1− 2p̃) + p̃(1− p̃)g′(p̃)

]
+ C (12)
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for all bounded and differentiable functions g, where C is a constant that does not depend on g.

Remark 2 We show in the proof of Theorem 3 that g∗ is bounded and differentiable so (12) holds

for g = g∗.

Theorem 3 suggests that we can approximate the risk, up to an irrelevant constant, by

R̂(g) =
1

n

n∑
i=1

g(p̃i)
2 + 2

1

n

n∑
i=1

[
g(p̃i)(1− 2p̃i) + p̃i(1− p̃i)g′(p̃i)

]
. (13)

However, simply minimizing (13) would provide a poor estimate for g∗(p̃) because, without any

smoothness constraints, R̂(g) can be trivially minimized. Hence, we place a smoothness penalty on

our criterion by minimizing

Q(g) = R̂(g) + λ

∫
g′′(p̃)2dp̃, (14)

where λ > 0 is a tuning parameter which adjusts the level of smoothness in g(p̃). We show in

our theoretical analysis in Section 2.4 (see the proof of Theorem 4) that, much as with the more

standard curve fitting setting, the solution to criteria of the form in (14) can be well approximated

using a natural cubic spline, which provides a computationally efficient approach to compute g(p̃).

Let b(x) represent the vector of basis functions for a natural cubic spline, with knots at

p̃1, . . . , p̃n, restricted to satisfy b(0.5) = 0. Then, in minimizing Q(g) we only need to consider func-

tions of the form g(p̃) = b(p̃)Tη, where η is the basis coefficients. Thus, (14) can be re-expressed

as

Qn(η) =
1

n

n∑
i=1

ηTb(p̃i)b(p̃i)
Tη + 2

1

n

n∑
i=1

[
(1− 2p̃i)b(p̃i)

T + p̃i(1− p̃i)b′(p̃i)T
]
η + ληTΩη (15)

where Ω =
∫
b′′(p̃)b′′(p̃)Tdp̃. Standard calculations show that (15) is minimized by setting

η̂ = −

(
n∑
i=1

b(p̃i)b(p̃i)
T + nλΩ

)−1 n∑
i=1

[
(1− 2p̃i)b(p̃i) + p̃i(1− p̃i)b′(p̃i)

]
. (16)

If the prior distribution of pi is not assumed to be symmetric, then g∗(p̃i) should be directly

estimated for 0 ≤ p̃i ≤ 1. However, if the prior is believed to be symmetric this approach is

inefficient, because it does not incorporate the identity g∗(p̃i) = −g∗(1 − p̃i). Hence, a superior

approach involves flipping all of the p̃i > 0.5 across 0.5, thus converting them into 1 − p̃i, and

then using both the flipped and the unflipped p̃i to estimate g(p̃i) between 0 and 0.5. Finally, the

identity ĝ(p̃i) = −ĝ(1− p̃i) can be used to define ĝ on (0.5, 1]. This is the approach we use for the

remainder of the paper.

Equation (16) allows us to compute estimates for E(pi|p̃i) and Var(pi|p̃i):

µ̂i = p̃i + γ̂(b(p̃i)
T η̂ + 1− 2p̃i) (17)

σ̂2i = γ̂p̃i(1− p̃i) + γ̂2p̃i(1− p̃i)[b′(p̃i)T η̂ − 2]. (18)

Equations (17) and (18) can then be substituted into (10) to produce the ECAP estimator p̂i.
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2.3.2 Estimation of λ and γ∗

In computing (17) and (18) we need to provide estimates for γ∗ and λ. We choose λ so as to

minimize a cross-validated version of the estimated risk (13). In particular, we randomly partition

the probabilities into K roughly even groups: G1, . . . , GK . Then, for given values of λ and k, η̂kλ
is computed via (16), with the probabilities in Gk excluded from the calculation. We then compute

the corresponding estimated risk on the probabilities in Gk:

Rkλ =
∑
i∈Gk

ĥ2ik + 2
∑
i∈Gk

[
(1− 2p̃i)ĥik + p̃i(1− p̃i)ĥ′ik

]
,

where ĥik = b(p̃i)
T η̂kλ and ĥ′ik = b′(p̃i)

T η̂kλ. This process is repeated K times for k = 1, . . . ,K,

and

Rλ =
1

n

K∑
k=1

Rkλ

is computed as our cross-validated risk estimate. Finally, we choose λ̂ = arg minλRλ.

To estimate γ∗ we need a measure of the accuracy of p̃i as an estimate of pi. In some cases that

information may be available from previous analyses. For example, if the estimates p̃i were obtained

by fitting a logistic regression model, we could compute the standard errors on the estimated

coefficients and hence form a variance estimate for each p̃i. We would estimate γ∗ by matching the

computed variance estimates to the expression (2) for the conditional variance under the ECAP

model.

Alternatively, we can use previously observed outcomes of Ai to estimate γ∗. Suppose that we

observe

Zi =

{
1 Ai occured,

0 Ai did not occur,
(19)

for i = 1, . . . , n. Then a natural approach is to compute the conditional log-likelihood function for

Zi given p̃i. Namely,

lγ =
∑
i:Zi=1

log(µ̂γi ) +
∑
i:Zi=0

log(1− µ̂γi ), (20)

where µ̂γi is the ECAP estimate of E(pi|p̃i) generated by substituting in a particular value of γ

into (17). We then choose the value of γ that maximizes (20).

As an example of this approach, consider the ESPN data recording probabilities of victory for

various NCAA football teams throughout each season. To form an estimate for γ∗ we can take the

observed outcomes of the games from last season (or the first couple of weeks of this season if there

are no previous games available), use these results to generate a set of Zi, and then choose the γ

that maximizes (20). One could then form ECAP estimates for future games during the season,

possibly updating the γ estimate as new games are played.

2.4 Large sample results

In this section we investigate the large sample behavior of the ECAP estimator. More specifically,

we show that, under smoothness assumptions on the function g∗, the ECAP adjusted probabilities

are consistent estimators of the corresponding oracle probabilities, defined in (5). We establish
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an analogous result for the corresponding values of the loss function, defined in (4). In addition

to demonstrating consistency we also derive the rates of convergence. Our method of proof takes

advantage of the theory of empirical processes, however, the corresponding arguments go well

beyond a simple application of the existing results.

We let f∗ denote the marginal density of the observed p̃i and define the L2(P̃ ) norm of a

given function u(p̃) as ‖u‖ = [
∫ 1
0 u

2(p̃)f∗(p̃)dp̃]1/2. We denote the corresponding empirical norm,

[(1/n)
∑n

i=1 u
2(p̃i)]

1/2, by ‖u‖n. To simplify the presentation of the results, we define

rn = n−4/7λ−1n + n−2/7 + λn and sn = 1 + n−4/7λ−2n .

We write ĝ for the minimizer of criterion (14) over all natural cubic spline functions g that corre-

spond to the sequence of n knots located at the observed p̃i. For concreteness, we focus on the case

where criterion (14) is computed over the entire interval [0, 1]. However, all of the results in this

section continue to hold if ĝ is determined by only computing the criterion over [0, 0.5], according

to the estimation approach described in Section 2.3.1. The following result establishes consistency

and rates of convergence for ĝ and ĝ′.

Theorem 4 If g∗ is twice continuously differentiable on [0, 1], f∗ is bounded away from zero and

n−8/21 � λn � 1, then

‖ĝ − g∗‖n = Op
(
rn
)
, ‖ĝ′ − g∗′‖n = Op

(√
rnsn

)
.

The above bounds also hold for the ‖ · ‖ norm.

Remark 3 The assumption n−8/21 � λn � 1 implies that the error bounds for ĝ and ĝ′ are of

order op(1).

When λn � n−2/7, Theorem 4 yields an n−2/7 rate of convergence for ĝ. This rate matches the

optimal rate of convergence for estimating the derivative of a density under the corresponding

smoothness conditions (Stone, 1980).

Given a value p̃ in the interval (0, 1), we define the ECAP estimator, p̂ = p̂(p̃), by replacing

p̃i, γ
∗, and g with p̃,γ̂ and ĝ, respectively, in the expression for the oracle estimator provided by

formulas (8), (9) and (10). Thus, we treat p̂ as a random function of p̃, where the randomness

comes from the fact that p̂ depends on the training sample of the observed probabilities p̃i. By

analogy, we define p0 via (10), with p̃i replaced by p̃, and view p0 as a (deterministic) function of p̃.

We define the function W0(p̃) as the expected loss for the oracle estimator:

W0(p̃) = Ep
[
EC (p0(p̃))

2 |p̃
]
,

where the expected value is taken over the true p given the corresponding observed probability p̃.

Similarly, we define the random function Ŵ (p̃) as the expected loss for the ECAP estimator,

Ŵ (p̃) = Ep
[
EC (p̂(p̃))2 |p̃

]
,

where the expected value is computed given the training sample p̃1, ..., p̃n and is again taken over

the true p conditional on the corresponding p̃. The randomness in the function Ŵ (p̃) is due to the

dependence of p̂ on the training sample.
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To state the asymptotic results for p̂ and Ŵ , we implement a minor technical modification in

the estimation of the conditional variance via formula (9). After computing the value of σ̂2, we set

it equal to max{σ̂2, c√rnsn}, where c is allowed to be any fixed positive constant. This ensures

that, as the sample size grows, σ̂2 does not approach zero too fast. We note that this technical

modification is only used to establish consistency of Ŵ (p̃) in the next theorem; all the other results

in this section hold both with and without this modification.

Theorem 5 If g∗ is twice continuously differentiable on [0, 1], f∗ is bounded away from zero,

n−8/21 � λn � 1 and |γ̂ − γ∗| = op(1), then

‖p̂− p0‖ = op(1) and ‖p̂− p0‖n = op(1).

If, in addition, |γ̂ − γ∗| = Op(
√
rnsn), then

1∫
0

∣∣Ŵ (p̃)−W0(p̃)
∣∣f∗(p̃)dp̃ = op(1) and

1

n

n∑
i=1

∣∣Ŵ (p̃i)−W0(p̃i)
∣∣ = op(1).

The next result provides the rates of convergence for p̂ and Ŵ .

Theorem 6 If g∗ is twice continuously differentiable on [0, 1], f∗ is bounded away from zero,

n−8/21 � λn � 1 and |γ̂ − γ∗| = Op
(√
rnsn

)
, then

1−ε∫
ε

∣∣p̂(p̃)− p0(p̃)∣∣2f∗(p̃)dp̃ = Op
(
rnsn

)
,

1−ε∫
ε

∣∣Ŵ (p̃)−W0(p̃)
∣∣f∗(p̃)dp̃ = Op

(
rnsn

)
,

∑
i: ε≤p̃i≤1−ε

1

n

∣∣p̂(p̃i)− p0(p̃i)∣∣2 = Op
(
rnsn

)
and

∑
i: ε≤p̃i≤1−ε

1

n

∣∣Ŵ (p̃i)−W0(p̃i)
∣∣ = Op

(
rnsn

)
,

for each fixed positive ε.

Remark 4 The assumption n−8/21 � λn � 1 ensures that all the error bounds are of order op(1).

In Theorem 6 we bound the integration limits away from zero and one, because the rate of conver-

gence changes as p̃ approaches those values. However, we note that ε can be set to an arbitrarily

small value. The optimal rate of convergence for Ŵ is provided in the following result.

Corollary 2 Suppose that λn decreases at the rate n−2/7 and |γ̂−γ∗| = Op(n
−1/7). If f∗ is bounded

away from zero and g∗ is twice continuously differentiable on [0, 1], then

1−ε∫
ε

∣∣Ŵ (p̃)−W0(p̃)
∣∣dp̃ = Op

(
n−2/7

)
and

∑
i: ε≤p̃i≤1−ε

1

n

∣∣Ŵ (p̃i)−W0(p̃i)
∣∣ = Op

(
n−2/7

)
,

for every positive ε.

Corollary 2 follows directly from Theorem 6 by balancing out the components in the expression

for rn.
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3 ECAP Extensions

In this section we consider two possible extensions of (1), the model for p̃i. In particular, in the

next subsection we discuss the setting where p̃i can no longer be considered an unbiased estimator

for pi, while in the following subsection we suggest a generalization of the beta model.

3.1 Incorporating Bias in p̃i

So far, we have assumed that p̃i is an unbiased estimate for pi. In practice probability estimates p̃i
may exhibit some systematic bias. For example, in Section 5 we examine probability predictions

from the FiveThirtyEight.com website on congressional house, senate, and governors races during

the 2018 US midterm election. After comparing the actual election results with the predicted

probability of a candidate being elected, there is clear evidence of bias in the estimates (Silver,

2018). In particular the leading candidate won many more races than would be suggested by

the probability estimates. This indicates that the FiveThirtyEight.com probabilities were overly

conservative, i.e., that in comparison to pi the estimate p̃i was generally closer to 0.5; for example,

E(p̃i|pi) < pi when pi > 0.5.

In this section we generalize (1) to model situations where E(p̃i|pi) 6= pi. To achieve this goal

we replace (1) with

p̃i|pi ∼ Beta(αi, βi), where pi = hθ(αiγ
∗) = hθ(1− βiγ∗), (21)

hθ(·) is a prespecified function, and θ is a parameter which determines the level of bias of p̃i. In

particular, (21) implies that for any invertible hθ,

pi = hθ(E(p̃i|pi)), (22)

so that if hθ(x) = x, i.e., hθ(·) is the identity function, then (21) reduces to (1), and p̃i is an

unbiased estimate for p̃i.

To produce a valid probability model hθ(·) needs to satisfy several criteria:

1. h0(x) = x, so that (21) reduces to (1) when θ = 0.

2. hθ(1− x) = 1− hθ(x), ensuring that the probabilities of events Ai and Aci sum to 1.

3. hθ(x) = x for x = 0, x = 0.5 and x = 1.

4. hθ(α) is invertible for values of θ in a region around zero, so that E(p̃i|pi) is unique.

The simplest polynomial function that satisfies all these constraints is

hθ(x) = (1− 0.5θ)x− θ[x3 − 1.5x2],

which is invertible for −4 ≤ θ ≤ 2. Note that for θ = 0, we have h0(x) = x, which corresponds to the

unbiased model (1). However, if θ > 0, then p̃i tends to overestimate small pi and underestimate

large pi, so the probability estimates are overly conservative. Alternatively, when θ < 0, then

p̃i tends to underestimate small pi and overestimate large pi, so the probability estimates exhibit

excess certainty. Figure 4 provides examples of E(p̃i|pi) for three different values of θ, with the
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Figure 4: Plots of E(p̃i|pi) as a function of pi for different values of θ. When θ = 0 (black / solid)
the estimates are unbiased. θ = 2 (orange / dashed) corresponds to a setting where p̃i systematically
underestimates large values of pi, while θ = −3 (green / dot-dashed) represents a situation where p̃i is an
overestimate for large values of pi.

green line representing probabilities resulting in excess certainty, the orange line overly conservative

probabilities, and the black line unbiased probabilities.

One of the appealing aspects of this model is that the ECAP oracle (10) can still be used to

generate an estimator for pi. The only change is in how E(pi|p̃i) and V ar(pi|p̃i) are computed.

The following result allows us to generalize Theorem 2 to the biased setting to compute E(pi|p̃i)
and V ar(pi|p̃i).

Theorem 7 Suppose that model (21) holds, pi has a bounded density, and µi and σ2i are respectively

defined as in (8) and (9). Then,

E(pi|p̃i) = µi + 0.5θ
[
3σ2i − 6µiσ

2
i + 3µ2i − µi − 2µ3i

]
+O

(
θγ∗3/2

)
(23)

V ar(pi|p̃i) = (1− 0.5θ)2σ2i + θσ2i
[
3µi(1− µi)(3θµi(1− µi)− 0.5θ + 1)

]
+O

(
θγ∗3/2

)
. (24)

The remainder terms in the above approximations are of smaller order than the leading terms

when γ∗ is small, which is typically the case in practice. As we demonstrate in the proof of Theo-

rem 7, explicit expressions can be provided for the remainder terms. However, the approximation

error involved in estimating these expressions is likely to be much higher than any bias from ex-

cluding them. Hence, we ignore these terms when estimating E(pi|p̃i) and V ar(pi|p̃i):

Ê(pi|p̃i) = µ̂i + 0.5θ
[
3σ̂2i − 6µ̂iσ̂

2
i + 3µ̂2i − µ̂i − 2µ̂3i

]
(25)

̂V ar(pi|p̃i) = (1− 0.5θ)2σ̂2i + θσ̂2i
[
3µ̂i(1− µ̂i)(3θµ̂i(1− µ̂i)− 0.5θ + 1)

]
. (26)

The only remaining issue in implementing this approach involves producing an estimate for θ.

However, this can be achieved using exactly the same maximum likelihood approach as the one

used to estimate γ∗, which is described in Section 2.3.2. Thus, we now choose both θ and γ to
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jointly maximize the likelihood function

lθ,γ =
∑
i:Zi=1

log(µ̂θ,γi ) +
∑
i:Zi=0

log(1− µ̂θ,γi ), (27)

where µ̂θ,γi is the bias corrected ECAP estimate of E(pi|p̃i) from (25), generated by substituting in

particular values of γ and θ. In all other respects, the bias corrected version of ECAP is implemented

in an identical fashion to the unbiased version.

3.2 Mixture Distribution

We now consider another possible extension of (1), where we believe that p̃i is an unbiased estimator

for pi but find the beta model assumption to be unrealistic. In this setting one could potentially

model p̃i using a variety of members of the exponential family. However, one appealing alternative

is to extend (1) to a mixture of beta distributions:

p̃i|pi ∼
K∑
k=1

wkBeta(αik, βik), where αik =
ckpi
γ∗

, βik =
1− ckpi
γ∗

, (28)

and wk and ck are predefined weights such that
∑

k wk = 1 and
∑

k wkck = 1. Note that (1) is a

special case of (28) with K = w1 = c1 = 1.

As K grows, the mixture model can provide as flexible a model as desired, but it also has a

number of other appealing characteristics. In particular, under this model it is still the case that

E(p̃i|pi) = pi. In addition, Theorem 8 demonstrates that simple closed form solutions still exist for

E(pi|p̃i) and V ar(pi|p̃i), and, hence, also the oracle ECAP estimator pi0.

Theorem 8 Under (28),

E(pi|p̃i) = µi

K∑
k=1

wk
ck

(29)

V ar(pi|p̃i) = (σ2i + µ2i )
K∑
k=1

wk
c2k
− µ2i

(
K∑
k=1

wk
ck

)2

, (30)

where µi and σ2i are defined in (8) and (9).

The generalized ECAP estimator can thus be generated by substituting µ̂i and σ̂2i , given by formu-

las (17) and (18), into (29) and (30). The only additional complication involves computing values

for wk and ck. For settings with a large enough sample size, this could be achieved using a variant

of the maximum likelihood approach discussed in Section 2.3.2. However, we do not explore that

approach further in this paper.

4 Simulation Results

In Section 4.1 we compare ECAP to competing methods under the assumption of unbiasedness

in p̃i. We further extend this comparison to the setting where p̃i represents a potentially biased

estimate in Section 4.2.
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Figure 5: Distributions of p used in the simulation

4.1 Unbiased Simulation Results

In this section our data consists of n = 1,000 triplets (pi, p̃i, Zi) for each simulation. The pi are

generated from one of three possible prior distributions; Beta(4, 4), an equal mixture of Beta(6, 2)

and Beta(2, 6), or Beta(1.5, 1.5). The corresponding density functions are displayed in Figure 5.

Recall that ECAP models p̃i as coming from a beta distribution, conditional on pi. However, in

practice there is no guarantee that the observed data will exactly follow this distribution. Hence,

we generate the observed data according to:

p̃i = pi + pqi (p̃
o
i − pi), (31)

where p̃oi |pi ∼ Beta(α, β) and q is a tuning parameter. In particular for q = 0 (31) generates

observations directly from the ECAP model, while larger values of q provide a greater deviation

from the beta assumption. In practice we found that setting q = 0 can result in p̃’s that are so

small they are effectively zero (p̃i = 10−20, for example). ECAP is not significantly impacted by

these probabilities but, as we show, other approaches can perform extremely poorly in this scenario.

Setting q > 0 prevents pathologic scenarios and allows us to more closely mimic what practitioners

will see in real life. We found that q = 0.05 typically gives a reasonable amount of dispersion so we

consider settings where either q = 0 or q = 0.05. We also consider different levels of the conditional

variance for p̃i, by taking γ∗ as either 0.005 or 0.03. Finally, we generate Zi, representing whether

event Ai occurs, from a Bernoulli distribution with probability pi.

We implement the following five approaches: the Unadjusted method, which simply uses the

original probability estimates p̃i, two implementations of the proposed ECAP approach (ECAP Opt

and ECAP MLE), and two versions of the James Stein approach (JS Opt and JS MLE). For the

proposed ECAP methods, we select λ via the cross-validation procedure in Section 2.3.2. ECAP

Opt is an oracle-type implementation of the ECAP methodology, in which we select γ to minimize

the average expected loss, defined in (4), over the training data. Alternatively, ECAP MLE makes

use of the Zi’s and estimates γ∗ using the maximum likelihood approach described in Section 2.3.2.

The James-Stein method we use is similar to its traditional formulation. In particular the estimated

probability is computed using

p̂JSi = ¯̃p+ (1− c) (p̃i − ¯̃p) , (32)
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Table 1: Average expected loss for different methods over multiple unbiased simulation scenarios.
Standard errors are provided in parentheses.

γ∗ q Method Type Beta(4, 4)
0.5*Beta(6,2) +
0.5*Beta(2,6)

Beta(1.5, 1.5)

0.005

0

Unadjusted 0.0116 (0.0001) 44.9824 (43.7241) 3.9×1012 (3.9×1012)
ECAP Opt 0.0095 (0.0001) 0.0236 (0.0002) 0.0197 (0.0001)
JS Opt 0.0100 (0.0001) 0.0241 (0.0002) 0.0204 (0.0002)
ECAP MLE 0.0120 (0.0004) 0.0326 (0.0008) 0.0294 (0.0009)
JS MLE 0.0121 (0.0003) 1.1590 (0.8569) 4.8941 (4.7526)

0.05

Unadjusted 0.0100 (0.0001) 0.0308 (0.0006) 0.0273 (0.0006)
ECAP Opt 0.0085 (0.0000) 0.0196 (0.0001) 0.0166 (0.0001)
JS Opt 0.0090 (0.0000) 0.0201 (0.0001) 0.0172 (0.0001)
ECAP MLE 0.0022 (0.0005) 0.0073 (0.0010) 0.0084 (0.0011)
JS MLE 0.0105 (0.0002) 0.0265 (0.0006) 0.0245 (0.0007)

0.03

0

Unadjusted 2.1×108 (2.1×108) 2.4×1014 (1.6×1014) 1.6×1015 (5.5×1014)
ECAP Opt 0.0391 (0.0002) 0.0854 (0.0004) 0.0740 (0.0004)
JS Opt 0.0537 (0.0002) 0.0986 (0.0005) 0.0899 (0.0005)
ECAP MLE 0.0435 (0.0009) 0.1202 (0.0136) 0.1203 (0.0152)
JS MLE 0.0636 (0.0019) 1.4×1013 (1.4×1013) 1.2×1014 (1.1×1014)

0.05

Unadjusted 0.0887 (0.0010) 0.3373 (0.0047) 0.2780 (0.0043)
ECAP Opt 0.0364 (0.0002) 0.0765 (0.0004) 0.0665 (0.0004)
JS Opt 0.0488 (0.0002) 0.0874 (0.0005) 0.0801 (0.0005)
ECAP MLE 0.0022 (0.0004) 0.0075 (0.0010) 0.0078 (0.0014)
JS MLE 0.0558 (0.0011) 0.1213 (0.0066) 0.1235 (0.0071)

where ¯̃p = 1
n

∑n
j=1 p̃j and c is a tuning parameter chosen to optimize the estimates.2 Equation (32)

is a convex combination of p̃i and the average observed probability ¯̃p. The JS Opt implementation

selects c to minimize the average expected loss in the same fashion as for ECAP Opt, while the JS

MLE implementation selects c using the maximum likelihood approach described in Section 2.3.2.

Note that ECAP Opt and JS Opt represent optimal situations that can not be implemented in

practice because they require knowledge of the true distribution of pi.

In each simulation run we generate both training and test data sets. Each method is fit on

the training data. We then calculate EC(p̂i)
2 for each point in the test data and average over

these observations. The results for the three prior distributions, two values of γ∗, and two values

of q, averaged over 100 simulation runs, are reported in Table 1. Since the ECAP Opt and JS Opt

approaches both represent oracle type methods, they should be compared with each other. The

ECAP Opt method statistically significantly outperforms its JS counterpart in each of the twelve

settings, with larger improvements in the noisy setting where γ∗ = 0.03. The ECAP MLE method

is statistically significantly better than the corresponding JS approach in all but five settings.

However, four of these settings, correspond to q = 0 and actually represent situations where JS

MLE has failed because it has extremely large excess certainty, which impacts both the mean

and standard error. Alternatively, the performance of the ECAP approach remains stable even

in the presence of extreme outliers. Similarly, the ECAP MLE approach statistically significantly

2To maintain consistency with ECAP we flip all p̃i > 0.5 across 0.5 before forming p̂JSi and then flip the estimate
back.
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Table 2: Average expected loss for different methods over multiple biased simulation scenarios.

Method Type Beta(4,4)
0.5*Beta(6,2) +
0.5*Beta(2,6)

Beta(1.5, 1.5)

θ = −3

Unadjusted 0.1749 (0.0005) 0.7837 (0.0025) 0.6052 (0.0030)
ECAP Opt 0.0019 (0.0000) 0.0109 (0.0000) 0.0086 (0.0000)
JS Opt 0.0609 (0.0002) 0.2431 (0.0005) 0.1526 (0.0003)
ECAP MLE 0.0036 (0.0002) 0.0135 (0.0003) 0.0111 (0.0003)
JS MLE 0.0633 (0.0003) 0.2712 (0.0014) 0.1707 (0.0011)

θ = −1

Unadjusted 0.0319 (0.0001) 0.1389 (0.0007) 0.1130 (0.0008)
ECAP Opt 0.0051 (0.0000) 0.0150 (0.0000) 0.0124 (0.0001)
JS Opt 0.0142 (0.0000) 0.0477 (0.0001) 0.0361 (0.0001)
ECAP MLE 0.0065 (0.0002) 0.0176 (0.0002) 0.0158 (0.0004)
JS MLE 0.0155 (0.0002) 0.0541 (0.0008) 0.0413 (0.0010)

θ = 0

Unadjusted 0.0099 (0.0000) 0.0305 (0.0002) 0.0275 (0.0003)
ECAP Opt 0.0084 (0.0000) 0.0195 (0.0001) 0.0164 (0.0001)
JS Opt 0.0088 (0.0000) 0.0199 (0.0001) 0.0171 (0.0001)
ECAP MLE 0.0102 (0.0003) 0.0229 (0.0003) 0.0206 (0.0005)
JS MLE 0.0094 (0.0001) 0.0233 (0.0005) 0.0219 (0.0005)

θ = 2

Unadjusted 0.0652 (0.0001) 0.2419 (0.0003) 0.1776 (0.0003)
ECAP Opt 0.0240 (0.0001) 0.0614 (0.0002) 0.0502 (0.0001)
JS Opt 0.0652 (0.0001) 0.2419 (0.0003) 0.1776 (0.0003)
ECAP MLE 0.0256 (0.0002) 0.0739 (0.0013) 0.0591 (0.0009)
JS MLE 0.0652 (0.0001) 0.2419 (0.0003) 0.1776 (0.0003)

outperforms the Unadjusted approach, often by large amounts, except for the five settings with

large outliers, which result in extremely bad average performance for the latter method.

4.2 Biased Simulation

In this section we extend the results to the setting where the observed probabilities may be biased,

i.e., E(p̃i|pi) 6= pi. To do this we generate p̃i according to (21) using four different values for θ,

{−3,−1, 0, 2}. Recall that θ < 0 corresponds to anti-conservative data, where p̃i tends to be too

close to 0 or 1, θ = 0 represents unbiased observations, and θ > 0 corresponds to conservative data,

where p̃i tends to be too far from 0 or 1. In all other respects our data is generated in an identical

fashion to that of the unbiased setting.3

To illustrate the biased setting we opted to focus on the q = 0.05 with γ∗ = 0.005 setting. We

also increased the sample size to n = 5,000 because of the increased difficulty of the problem. The

two ECAP implementations now require us to estimate three parameters: λ, γ and θ. We estimate

λ in the same fashion as previously discussed, while γ and θ are now chosen over a two-dimensional

grid of values, with θ restricted to lie between −4 and 2. The two JS methods remain unchanged.

The results, again averaged over 100 simulation runs, are presented in Table 2. In the two

settings where θ < 0 we note that the unadjusted and JS methods all exhibit significant deteriora-

tion in their performance relative to the unbiased θ = 0 scenario. By comparison, the two ECAP

methods significantly outperform the JS and unadjusted approaches. A similar pattern is observed

for θ > 0. In this setting all five methods deteriorate, but ECAP is far more robust to the biased

setting than unadjusted and JS.

3Because the observed probabilities are now biased, we replace pi in (31) with E(p̃i|pi).
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Figure 6: A screenshot of the NCAA football win probabilities publicly available on ESPN’s website. USC
vs. Texas (2017)

It is perhaps not surprising that the bias corrected version of ECAP outperforms the other

methods when the data is indeed biased. However, just as interestingly, even in the unbiased

setting (θ = 0) we still observe that ECAP matches or slightly outperforms its JS counterpart,

despite the fact that ECAP must estimate θ. This is likely a result of the fact that ECAP is

able to accurately estimate θ. Over all simulation runs and settings, ECAP Opt and ECAP MLE

respectively averaged absolute errors of only 0.0582 and 0.2016 in estimating θ.

5 Empirical Results

In this section we illustrate ECAP on two real world data sets. Section 5.1 contains our results

analyzing ESPN’s probability estimates from NCAA football games, while Section 5.2 examines

probability estimates from the 2018 US midterm elections. Given that for real data pi is never

observed, we need to compute an estimate of EC(p̂i). Hence, we choose a small window δ, for

example δ = [0, 0.02], and consider all observations for which p̃i falls within δ.4 We then estimate pi
via p̄δ = 1

nδ

∑n
i=1 Ziδi, where δi = I(p̃i ∈ δ), nδ =

∑n
i=1 δi and Zi is defined as in (19). Hence we

can estimate EC using

ÊCδ( ¯̂pδ) =
p̄δ − ¯̂pδ

¯̂pδ
, (33)

where ¯̂pδ = 1
nδ

∑n
i=1 p̂iδi.

5.1 ESPN NCAA Football Data

Each year there are approximately 1,200 Division 1 NCAA football games played within the US.

For the last several seasons ESPN has been producing automatic win probability estimates for

every game. These probabilities update in real time after every play. Figure 6 provides an example

of a fully realized game between the University of Southern California (USC) and the University

of Texas at Austin (TEX) during the 2017 season. For most of the game the probability of a USC

win hovers around 75% but towards the end of the game the probability starts to oscillate wildly,

with both teams having high win probabilities, before USC ultimately wins.5 These gyrations are

4In this section, for simplicity of notation, we have flipped all probabilities greater than 0.5, and the associated
Zi around 0.5 so δ = [0, 0.02] also includes probabilities between 0.98 and 1.

5The game was not chosen at random.
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Ê
C
δ

Method Type

ECAP

ESPN Unadjusted

Figure 7: Empirical EC in both the unadjusted and ECAP setting with δ = [0, 0.02].

quite common and occasionally result in a team with a high win probability ultimately losing. Of

course even a team with a 99% win probability will end up losing 1% of the time so these unusual

outcomes do not necessarily indicate an error, or selection bias issue, with the probability estimates.

To assess the accuracy of ESPN’s estimation procedure we collected data from the 2016 and

2017 NCAA football seasons. We obtained this unique data set by scrapping the win probabilities,

and ultimate winning team, for a total of 1,722 games (about 860 per season), involving an average

of approximately 180 probabilities per game. Each game runs for 60 minutes, although the clock

is often stopped. For any particular time point t during these 60 minutes, we took the probability

estimate closest to t in each of the individual games. We used the entire data set, 2016 and 2017,

to compute p̄δ, which represents the ideal gold standard. However, this estimator is impractical in

practice because we would need to collect data over two full years to implement it. By comparison,

we used only the 2016 season to fit ECAP and ultimately to compute ¯̂pδ. We then calculated

ÊCδ( ¯̂pδ, t) for both the raw ESPN probabilities and the adjusted ECAP estimates. The intuition

here is that ÊCδ( ¯̂pδ, t) provides a comparison of these estimates to the ideal, but unrealistic, p̄δ.

In general we found that ÊCδ( ¯̂pδ, t) computed on the ESPN probabilities was not systemati-

cally different from zero, suggesting ESPN’s probabilities were reasonably accurate. However, we

observed that, for extreme values of δ, ÊCδ( ¯̂pδ, t) was well above zero towards the end of the games.

Consider, for example, the solid orange line in Figure 7, which plots ÊCδ( ¯̂pδ, t) using δ = [0, 0.02]

at six different time points during the final minute of these games. We observe that excess certainty

is consistently well above zero. The 90% bootstrap confidence intervals (dashed lines), generated

by sampling with replacement from the probabilities that landed inside δi, demonstrate that the

difference from zero is statistically significant for most time points. This suggests that towards the

end of the game ESPN’s probabilities are too extreme i.e. there are more upsets then would be

predicted by their estimates.

Next we applied the unbiased implementation of ECAP, i.e. with θ = 0, separately to each

of these six time points and computed ÊCδ(t) for the associated ECAP probability estimates. To

estimate the out of sample performance of our method, we randomly picked half of the 2016 games
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Table 3: Bias corrected ECAP adjustment of FiveThirtyEight’s 2018 election probabilities. Re-
ported average ÊCδ.

Method Adjustment δ1 δ2

Classic
Unadjusted -0.6910 -0.8361
ECAP -0.2881 -0.0758

Deluxe
Unadjusted -0.4276 -0.8137
ECAP -0.0371 0.1814

Lite
Unadjusted -0.8037 -0.8302
ECAP -0.3876 -0.1118

to estimate γ∗, and then used ECAP to produce probability estimates on the other half. We

repeated this process 100 times and averaged the resulting ÊCδ( ¯̂pδ, t) independently for each time

point. The solid green line in Figure 7 provides the estimated excess certainty. ECAP appears to

work well on this data, with excess certainty estimates close to zero. Notice also that ECAP is

consistently producing a slightly negative excess certainty, which is actually necessary to minimize

the expected loss function (4), as demonstrated in Figure 3. Interestingly this excess certainty

pattern in the ESPN probabilities is no longer apparent in data for the 2018 season, suggesting

that ESPN also identified this as an issue and applied a correction to their estimation procedure.

5.2 Election Data

Probabilities have increasingly been used to predict election results. For example, news organiza-

tions, political campaigns, and others, often attempt to predict the probability of a given candidate

winning a governors race, or a seat in the house, or senate. Among other uses, political parties

can use these estimates to optimize their funding allocations across hundreds of different races. In

this section we illustrate ECAP using probability estimates produced by the FiveThirtyEight.com

website during the 2018 US midterm election cycle. FiveThrityEight used three different methods,

Classic, Deluxe, and Lite, to generate probability estimates for every governor, house, and senate

seat up for election, resulting in 506 probability estimates for each of the three methods.

Interestingly a previous analysis of this data (Silver, 2018) showed that the FiveThirtyEight

probability estimates appeared to be overly conservative i.e. the leading candidate won more often

than would have been predicted by their probabilities. Hence, we should be able to improve the

probability estimates using the bias corrected version of ECAP from Section 3.1. We first computed

ÊCδ( ¯̂pδ) on the unadjusted FiveThirtyEight probability estimates using two different values for δ

i.e. δ1 = [0, 0.1] and δ2 = [0.1, 0.2]. We used wider windows for δ in comparison to the ESPN

data because we only had one third as many observations. The results for the three methods used

by FiveThirtyEight are shown in Table 3. Notice that for all three methods and both values of

δ the unadjusted estimates are far below zero and several are close to −1, the minimum possible

value. These results validate the previous analysis suggesting the FiveThirtyEight estimates are

systematically conservatively biased.

Next we applied ECAP separately to each of the three sets of probability estimates, with the

value of θ chosen using the MLE approach previously described. Again the results are provided in

Table 3. ECAP appears to have significantly reduced the level of bias, with most values of ÊCδ( ¯̂pδ)

close to zero, and in one case actually slightly above zero. For the Deluxe method with δ1, ECAP
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Figure 8: ECAP bias corrected probabilities vs original FiveThirtyEight probability from classic
method.

has an almost perfect level of excess certainty. For the Classic and Lite methods, θ = 2 was chosen

by ECAP for both values of δ, representing the largest possible level of bias correction. For the

Deluxe method, ECAP selected θ = 1.9. Figure 8 demonstrates the significant level of correction

that ECAP applies to the classic method FiveThirtyEight estimates. For example, ECAP adjusts

probability estimates of 0.8 to 0.89 and estimates of 0.9 to 0.97.

6 Discussion

In this article, we have convincingly demonstrated both theoretically and empirically that proba-

bility estimates are subject to selection bias, even when the individual estimates are unbiased. Our

proposed ECAP method applies a novel non-parametric empirical Bayes approach to adjust both

biased and unbiased probabilities, and hence produce more accurate estimates. The results in both

the simulation study and on real data sets demonstrate that ECAP can successfully correct for

selection bias, allowing us to use the probabilities with a higher level of confidence when selecting

extreme values.

There are a number of possible areas for future work. For example, the ESPN data contains

an interesting time series structure to the probabilities, with each game consisting of a probability

function measured over 60 minutes. Our current method treats each time point independently

and adjusts the probabilities accordingly. However, one may be able to leverage more power by

incorporating all time points simultaneously using some form of functional data analysis. Another

potential area of exploration involves the type of data on which ECAP is implemented. For example,

consider a setting involving a large number of hypothesis tests and associated p-values, p̃1, . . . , p̃n.

There has been much discussion recently of the limitations around using p-values. A superior

approach would involve thresholding based on the posterior probability of the null hypothesis

being true i.e. pi = P (H0i|Xi). Of course, in general, pi is difficult to compute which is why we
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use the p-value p̃i. However, if we were to treat p̃i as a, possibly biased, estimate of pi, then it

may be possible to use a modified version of ECAP to estimate pi. If such an approach could be

implemented it would likely have a significant impact in the area of multiple hypothesis testing.
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